A marginal model for relative survival

Paul C Lambert^{1,2}, Elisavet Syriopoulou¹, Mark J Rutherford¹

¹Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden ²Department of Health Sciences, University of Leicester, UK

Intenational Biometric Society 2020

$$h(t|oldsymbol{X}_i) = h^*(t|oldsymbol{X}_i) + \lambda(t|oldsymbol{X}_i)$$

- All cause mortality rate partitioned into two components
 - Expected mortality rate
 - Excess mortality rate

$$h(t|\boldsymbol{X}_i) = h^*(t|\boldsymbol{X}_i) + \lambda(t|\boldsymbol{X}_i)$$

- All cause mortality rate partitioned into two components
 - Expected mortality rate
 - Excess mortality rate

$$h(t|\boldsymbol{X}_i) = h^*(t|\boldsymbol{X}_i) + \lambda(t|\boldsymbol{X}_i)$$

- All cause mortality rate partitioned into two components
 - Expected mortality rate
 - Excess mortality rate

$$h(t|oldsymbol{X}_i) = h^*(t|oldsymbol{X}_i) + \overline{\lambda(t|oldsymbol{X}_i)}$$

- All cause mortality rate partitioned into two components
 - Expected mortality rate
 - Excess mortality rate

Excess Mortality

$$h(t|oldsymbol{X}_i) = h^*(t|oldsymbol{X}_i) + \lambda(t|oldsymbol{X}_i)$$

• All cause mortality rate partitioned into two components

- Expected mortality rate
- Excess mortality rate

Relative Survival

$$R(t|\boldsymbol{X}_i) = \exp\left(-\int_0^t \lambda(u|\boldsymbol{X}_i) du\right)$$

• Interpreted as net survival under assumptions.

Marginal Relative Survival

• Often interested in a summary measure.

Marginal Relative Survival

 $R_m(t) = E_{\boldsymbol{X}}[R(t|\boldsymbol{X}_i)]$

Marginal Relative Survival

• Often interested in a summary measure.

Marginal Relative Survival

$$R_m(t) = E_{\boldsymbol{X}}[R(t|\boldsymbol{X}_i)]$$

• Estimated in modelling framework by,

Estimation of $R_m(t)$

$$\widehat{R}_m(t) = rac{1}{N}\sum_{i=1}^N \widehat{R}(t|m{X}_i)$$

Marginal Relative Survival

• Often interested in a summary measure.

Marginal Relative Survival

$$R_m(t) = E_{\boldsymbol{X}}[R(t|\boldsymbol{X}_i)]$$

• Estimated in modelling framework by,

Estimation of $R_m(t)$

$$\widehat{R}_m(t) = rac{1}{N}\sum_{i=1}^N \widehat{R}(t|oldsymbol{X}_i)$$

• Effect of age usually non-linear. Assumption of proportional excess hazards usually not appropriate.

• A reasonable all-cause parametric model with no covariates should give similar estimates to the non-parametric Kaplan-Meier estimate

- A reasonable all-cause parametric model with no covariates should give similar estimates to the non-parametric Kaplan-Meier estimate
- A relative survival parametric model with no covariates is not similar to the non-parametric (Pohar Perme) estimate.

• Consider a model with no covariates for the excess mortality,

 $h(t|oldsymbol{X}_i) = h^*(t|oldsymbol{X}_i) + \lambda(t)$

• Consider a model with no covariates for the excess mortality,

 $h(t|oldsymbol{X}_i) = h^*(t|oldsymbol{X}_i) + \lambda(t)$

• All cause mortality rate varies between individuals due to variation in expected mortality rate

• Consider a model with no covariates for the excess mortality,

 $h(t|oldsymbol{X}_i) = h^*(t|oldsymbol{X}_i) + \lambda(t)$

- All cause mortality rate varies between individuals due to variation in expected mortality rate
- The model assumes excess mortality rate is constant between individuals

• Consider a model with no covariates for the excess mortality,

 $h(t|oldsymbol{X}_i) = h^*(t|oldsymbol{X}_i) + \lambda(t)$

- All cause mortality rate varies between individuals due to variation in expected mortality rate
- The model assumes excess mortality rate is constant between individuals
- Which is not what we want to estimate.....

Marginal hazard function

$$\lambda_m(t) = \frac{E_{\boldsymbol{X}}[R(t|\boldsymbol{X})\lambda(t|\boldsymbol{X})]}{E_{\boldsymbol{X}}[R(t|\boldsymbol{X})]}$$

A marginal model

Marginal Model

$$h_m(t) = h_m^*(t) + \lambda_m(t)$$

Marginal Model

$$h_m(t) = h_m^*(t) + \lambda_m(t)$$

- How to define $h_m^*(t)$?
- λ_m(t) is the hazard in the hypothetical situation where it is not possible to die from other causes.

Marginal Model

$$h_m(t) = h_m^*(t) + \lambda_m(t)$$

- How to define $h_m^*(t)$?
- λ_m(t) is the hazard in the hypothetical situation where it is not possible to die from other causes.
- As time increases those more likely to die from other causes increasingly underrepresented.
- Estimation needs to account for this through incorporation of weights.

• Weights the same as in non-parametric Pohar Perme estimator.

Expected survival at time t $S^*(t|\mathbf{X}_i) = \exp\left(-\int_0^t h^*(u|\mathbf{X}_i)du\right)$

Weights

$$w_i^*(t) = \frac{1}{S^*(t|\boldsymbol{X}_i)}$$

• Weights the same as in non-parametric Pohar Perme estimator.

Expected survival at time t

$$S^*(t|\boldsymbol{X}_i) = \exp\left(-\int_0^t h^*(u|\boldsymbol{X}_i)du
ight)$$

Weights

$$w_i^*(t) = rac{1}{S^*(t|oldsymbol{X}_i)}$$

• Weights are....

- Incorporated into likelihood
- Used to calculate weighted marginal expected mortality rate.

$$\ln L_i = d_i \ w_i^*(t_i) \ \ln \left[h_m^*(t_i) + \lambda_m(t_i|\boldsymbol{\gamma})\right] - \int_0^{t_i} w_i^*(u) \ \lambda_m(u|\boldsymbol{\gamma}) du$$

$$\ln L_i = d_i \underbrace{w_i^*(t_i)}_{i} \ln \left[h_m^*(t_i) + \lambda_m(t_i|\gamma)\right] - \int_0^{t_i} \underbrace{w_i^*(u)}_{i} \lambda_m(u|\gamma) du$$

$$\ln L_i = d_i \ w_i^*(t_i) \ \ln \left(\frac{h_m^*(t_i)}{h_m(t_i)} + \lambda_m(t_i|\gamma) \right] - \int_0^{t_i} w_i^*(u) \ \lambda_m(u|\gamma) du$$

Marginal expected hazard

$$\underbrace{h_m^*(t_i)}_{j \in \mathcal{R}(t_i)} = \frac{\sum\limits_{j \in \mathcal{R}(t_i)} w_j^*(t_i) h^*(t_i | \boldsymbol{X}_j)}{\sum\limits_{j \in \mathcal{R}(t_i)} w_j^*(t_i)}$$

$$\ln L_i = d_i \ w_i^*(t_i) \ \ln \left[h_m^*(t_i) + \lambda_m(t_i|\gamma)\right] - \int_0^{t_i} w_i^*(u) \ \lambda_m(u|\gamma) du$$

Marginal expected hazard

$$h_m^*(t_i) = rac{\sum\limits_{j \in \mathcal{R}(t_i)} w_j^*(t_i) h^*(t_i | oldsymbol{X}_j)}{\sum\limits_{j \in \mathcal{R}(t_i)} w_j^*(t_i)}$$

Approximation

• We approximate the integral in the likelihood by splitting the time-scale into a number of intervals and assume that the weight is constant within each interval.

- We approximate the integral in the likelihood by splitting the time-scale into a number of intervals and assume that the weight is constant within each interval.
- This means that standard software to fit relative survival models can be used.

- We approximate the integral in the likelihood by splitting the time-scale into a number of intervals and assume that the weight is constant within each interval.
- This means that standard software to fit relative survival models can be used.
- The software needs to be able to,
 - incorporate weights
 - incorporate delayed entry

- We approximate the integral in the likelihood by splitting the time-scale into a number of intervals and assume that the weight is constant within each interval.
- This means that standard software to fit relative survival models can be used.
- The software needs to be able to,
 - incorporate weights
 - incorporate delayed entry
- When choosing number of split points there is a balance between accuracy versus computational efficiency.
- Stata software mrsprep calculates weights and restructures the data.

Simulation

	Time			
	1	5	10	
Pohar Perme	-0.0012	0.0006	0.0033	
	95.1	96.1	95.2	
	215.703	323.095	505.115	
Conditional Model	0.0292	0.0590	0.0584	
	45.9	10.3	15.0	
	1058.174	3806.964	3802.487	
Regression standardization*	0.0007	0.0014	0.0030	
	94.6	97.6	96.9	
	194.753	309.939	449.500	
Marginal model	0.0007	0.0009	0.0035	
	95.7	96.9	95.2	
	194.764	307.189	498.378	
bias, Coverage, MSE				

* 0.5% of models did not converge

Simulation

	Time			
	1	5	10	
Pohar Perme	-0.0012	0.0006	0.0033	
	95.1	96.1	<i>95.2</i>	
	215.703	323.095	505.115	
Conditional Model	0.0292	0.0590	0.0584	
	45.9	10.3	15.0	
	1058.174	3806.964	3802.487	
Regression standardization*	0.0007	0.0014	0.0030	
	94.6	97.6	96.9	
	194.753	309.939	449.500	
Marginal model	0.0007	0.0009	0.0035	
	95.7	96.9	95.2	
	194.764	307.189	498.378	
bias, Coverage, MSE				

* 0.5% of models did not converge

Simulation

	Time			
	1	5	10	
Pohar Perme	-0.0012	0.0006	0.0033	
	95.1	96.1	<i>95.2</i>	
	215.703	323.095	505.115	
Conditional Model	0.0292	0.0590	0.0584	
Conditional Model	45.9	10.3	15.0	
	1058.174	3806.964	3802.487	
Regression standardization*	0.0007	0.0014	0.0030	
	94.6	97.6	96.9	
	194.753	309.939	449.500	
Marginal model	0.0007	0.0009	0.0035	
	95.7	96.9	95.2	
	194.764	307.189	498.378	
bias, Coverage, MSE				

* 0.5% of models did not converge

External (Age) standardization and contrasts

- When comparing different populations there is a need to standardize to the same covariate distribution.
- Common to standardize to external age distribution.
 - E.g. The International Cancer Survival Standard (ICSS)
- Let p_i^a be the proportion in the age group to which the *i*th individual belongs
- Let p_i^R be the corresponding proportion in the reference population.

External (Age) standardization and contrasts 2

• Weights can be defined to upweight or downweight individual relative to the reference population.

Incorporating weights

$$w^a_i = rac{p^R_i}{p^a_i}$$
 $(t) = w^a_i w^*_i(t)$

• Enables externally age-standardized estimates to be obtained without the need to model, or stratify by, age.

W;

• When modelling covariates (e.g. different regions/countries, socio-economic groups, time-periods or sexes) weights should be calculated separately within subgroups.

- 4,744 patients diagnosed with Melanoma between 1985–1994.
- Data distributed with strs Stata package.
- I will compare relative survival of males and females.
- Need to age standardize to same age distribution (ICSS).
- Use Flexible Parametric (Royston-Parmar) models.

Melanoma Example

Melanoma Example

Melanoma Example

External Age Standardization

External Age Standardization

- Enables estimation of (externally) standardized marginal relative survival without the need to model or stratify by age (or other covariates affecting expected mortality rates).
- Approach enables further adjustment of relative survival models using IPW (See Betty Syrioupoulou's talk)
- Useful way to obtain summary measure, but conditional model is useful for more detailed comparisons of population groups.